

Vorlesung Praxis Leistungselektronischer Systeme

WS2017/18

Elektrotechnisches Institut (ETI) – Leistungselektronische Systeme

Gliederung

- 1. Organisatorisches
 - 1.1 Vorlesung
 - 1.2 Prüfung
- 2. Elektrotechnisches Institut Leistungselektronische Systeme
 - 2.1 Vorstellung
 - 2.2 Arbeitsgebiete
 - 2.3 Forschungsprojekte
- 3. Vorlesungsinhalte
- 4. Literaturempfehlungen

1. Organisatorisches - Vorlesung

Vorlesung: Dienstags, 11:30 – 13:00 Uhr, kleiner ETI-Hörsaal. Termine: http://www.eti.kit.edu → Studium und Lehre → "Praxis Leistungselektronischer Systeme"

Vorlesungsunterlagen: werden passwort-geschützt als PDF auf der Vorlesungs-Website zum Download bereitgestellt.

Benutzername: pls Passwort: stromrichter

- Sprechstunde: Dienstags, 14:00 15:00 Uhr, sowie nach Vereinbarung
- Voraussetzungen: Grundlagenwissen in Leistungselektronik empfehlenswert (z.B. Leistungselektronik, Hochleistungsstromrichter)
- Fragen / Feedback / Anregungen / Kritik / Wünsche: Bitte jederzeit!

Prof. Dr.-Ing.

Marc Hiller

Professur Leistungselektronische Systeme (PES)
Tel.: +49 (721) 608-42474
Marc.Hiller@kit.edu
Campus Süd, Geb. 11.10
Raum 116

1. Organisatorisches - Vorlesung

- Die Vorlesung richtet sich an Master-Studenten der Elektrotechnik und Informationstechnik sowie Mechatronik mit dem entsprechenden Vorwissen in Leistungselektronik
 - aus dem Bachelor-Studium, z.B. aus der Vorlesung Elektrische Maschinen und Stromrichter (EMS) von Prof. Braun oder
 - aus dem Master-Studium, z.B. aus den Vorlesungen Leistungselektronik (LE) oder Hochleistungsstromrichter (HLS) von Prof. Braun.
- Die Vorlesung ist auch für Master-Studenten des Maschinenbaus und der Energietechnik mit zusätzlichen Vorwissen über Elektrische Maschinen und Leistungselektronik geeignet.
- Mündliche Prüfung (ca. 20-25 Min.) in deutscher Sprache. Zur Vorbereitung ist der regelmäßige Besuch von Vorlesung sehr empfehlenswert ©

1. Organisatorisches - Prüfung

- Abklären der Prüfungsberechtigung. Wenn nötig, Genehmigung durch den zuständigen Prüfungsausschuss einholen.
 - Elektrotechniker: Integration in den Wahlbereich (z.B. D.4 Elektromobilität; D.5 Regelungsund Steuerungstechnik; D.6 Elektrische Antriebe und Leistungselektronik; D.9 Elektroenergiesysteme und Hochspannungstechnik; D.10 Optische Technologien; D.18 Regenerative Energien; D.23 Elektrische Energiesysteme und Energiewirtschaft) des Master-Studiengangs ist möglich, ggf. mit Modellberater abklären.
 - Ggf. Maschinenbauer, Wirtschaftsingenieure und sonstige Studiengänge: Abholen des blauen Prüfungszettels im Studienbüro. Die Genehmigung des jeweiligen Prüfungsausschusses muss fallabhängig vorgelegt werden.

1. Organisatorisches - Prüfung

2. Anmeldung zur Prüfung:

- Elektrotechniker: Online Anmeldung über das Studierendenportal und Terminvereinbarung mit Fr. Czapnik.
- Maschinenbauer: Online Anmeldung über das Studierendenportal oder durch Abgeben des Prüfungszettels bei Frau Czapnik.
- Wirtschaftsingenieure und sonstige Studiengänge: Anmeldung durch Abgeben des Prüfungszettels im Sekretariat bei Frau Czapnik.

Ein Rücktritt von der Prüfung kann in Ausnahmefällen am Prüfungstag erfolgen. Unentschuldigtes Fehlen wird als nicht bestanden bewertet.

3. Prüfung:

- Mündlich, Termin: tbd
- 4. Die Prüfung wird mit 2+0 SWS bzw. 3 ECTS gewertet.

2. Das ETI - CV Marc Hiller

1993 - 1998 Studium Elektrotechnik

TU Darmstadt, Schwerpunkt:

Allgemeine Elektrotechnik

1999 Entw.-Ing. Traktionsstromrichter für

Bahnanwendungen,

Siemens AG, Erlangen

1999 - 2004 Promotion Universität der

Bundeswehr München,

Thema: "Stromrichter und

Regelungsverfahren für Geschaltete

Reluktanzmaschinen"

2005 - 2015 Entwicklung Nieder- und

Mittelspannungsumrichter für

Industrieanwendungen, Siemens AG,

Nürnberg

zuletzt Gruppenleiter für die

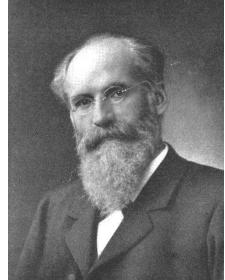
Leistungsteilentwicklung

2015 - Professur für Leistungselektronische

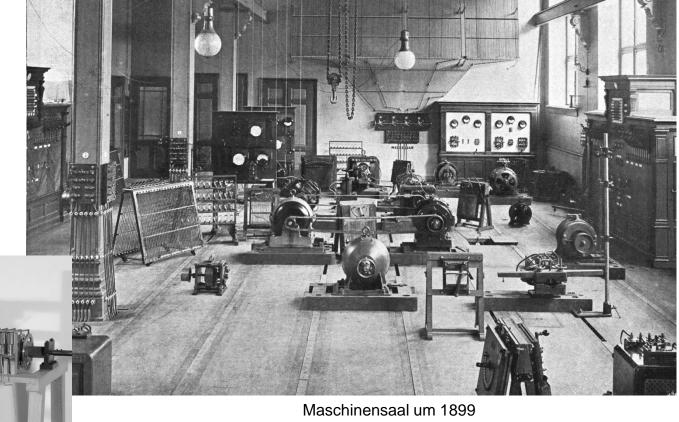
Systeme, ETI, KIT

2. Das ETI - CV Marc Hiller

Quelle: Siemens



2. Elektrotechnisches Institut (ETI)



- 1894 Berufung von Prof. Engelbert Arnold als ersten Professor der Elektrotechnik in Karlsruhe
- 1899 Einweihung des ETI im Beisein seiner Königlichen Hoheit Großherzog Friedrich

2. Elektrotechnisches Institut (ETI)

Engelbert Arnold (Institutsgründung 1895)

Erster Elektromotor von M. Jacobi,1834 (funktionsfähige Replik am ETI)

2. Elektrotechnisches Institut (ETI) – Professoren

Prof. Dr.-Ing.

Michael Braun

Chair Electrical Drives and Power Electronics (EAL)

Tel.: +49 (721) 608-42472

Michael.Braun@kit.edu

Campus Süd, Geb. 11.10

Raum 111

50 Master/Bachelor thesis

Prof. Dr.-Ing.

Martin Doppelbauer

Chair Hybrid Electrical

Vehicles (HEV)

Tel.: +49 (721) 608-46250

Martin.Doppelbauer@kit.edu

Campus Süd, Geb. 11.10

external Ph.D. students

Workshops/Seminars p.a.

1.440 Exam

Lectures p.a.

Marc Hiller
Chair Power Electronic
Systems (PES)
Tel.: +49 (721) 608-42474
Marc.Hiller@kit.edu
Campus Süd, Geb. 11.10
Raum 116

14

1.000 T€ external funding (2015)

Raum 114

Prof. Dr.-Ing.

2. ETI - Aktuelle Projektpartner (Stand 2016)

Freude am Fahren

KSB **b**

2. ETI - Lehrveranstaltungen

Grundlagen **EEMB EMS** Elektrische Maschinen Elektrotechnik und Elekund Stromrichter tronik für Maschinenbau **Prof. Braun** Dr. Becker PE **EM** Power Electronics **Electrical Machines** (ENTECH) (ENTECH) Vertiefung Prof. Hiller Prof. Doppelbauer Anwendungen PEA LES ES HEF LE **Praxis Elektrischer** Praxis Leistungs-Hybride und Elektrische Leistungselektronik **Antriebe** elektronischer Systeme Elektrische Fahrzeuge Schienenfahrzeuge Prof. Hiller Prof. Doppelbauer Prof. Hiller Prof. Doppelbauer Prof. Gratzfeld

Spezialisierung

EEM

Entwurf Elektrischer Maschinen Prof. Doppelbauer **SBD**

Systemanalyse und Betriebsverhalten ASM **Dr. Becker** **REA**

HLS

Hochleistungs-

Stromrichter

Prof. Braun

Regelung Elektrischer Antriebe **Prof. Braun** SRST

LPW

Leistungselektronik für

Photovoltaik und Wind

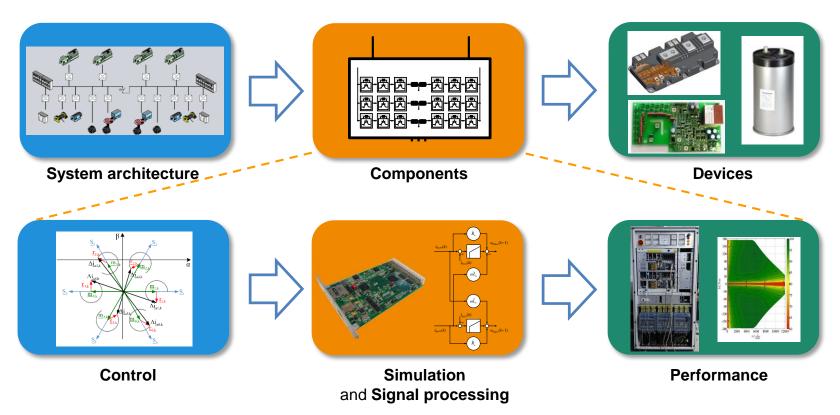
Prof. Burger

Stromrichter Steuerungstechnik **Hr. Liske** STIE

AVT

Aufbau- und

Verbindungstechnik

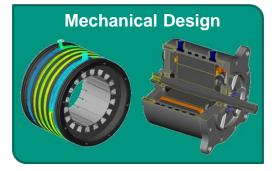

Dr. Blank

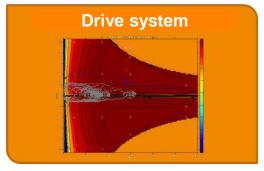
Schaltungstechnik in der Industrieelektronik **Hr. Liske**

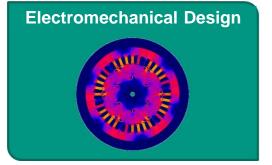
2. ETI - Elektrische Antriebe und Leistungselektronik – Prof. Braun / Hiller

Competencies

- Electrical and thermal converter design & calculation
- Qualification of LV/MV power semiconductors
- Topology design (power and control)
- Control algorithms for grid and motor applications / Software development
- Prototyping: Design, Manufacturing, Test
- Test setup design and prototype verification


2. ETI – Hybridelektrische Fahrzeuge - Prof. Doppelbauer





- Design to Manufacturing
- Improved concepts for cooling and lightweight design
- New materials

- Concept design and evaluation
- Drivetrain simulation
- Optimization of motor and power electronics for automotive applications

- Analytical and numerical design process
- Innovative motor design
- Control strategies

2. ETI – Leistungselektronische Systeme - Forschungsthemen

Power

Converters

System

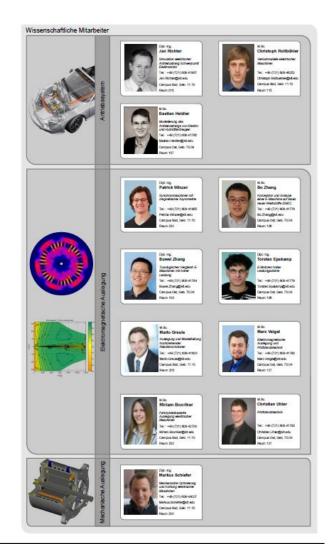
design

- Design of LV & MV Multilevel Converters for grid and motor applications
- Qualification of LV/MV Power semiconductors
- Focus on increased reliability, reduced costs and new semiconductor technologies (SiC, RC-IGBTs)
- Infrastructure:
 - LV Semiconductor test setup
 - (MV Lab)
- Integration of storage in converters and grids
- Drive system design with respect to fault tolerance and power density
- Integrated approach in investigating power electronic systems (converters including other system components, e.g. filters, cables, transformers)

- Topologies for LV & MV PHiL converters
- Fast control HW & SW for PHiL converters (based on ETI DSP platform)
- Emulation of n-phase machines
 - Emulation of grids
 - Characterization of line impedance and converter behavior by converters

Motor/Grid control

PHIL


- Modelling, parameter identification and control of PMSM
- Sensorless control
- Grid control of 2L- and Multilevel converters

2. Elektrotechnisches Institut (ETI) – Das gesamte Team

Elektrotechnisches Institut (ETI)

Leistungselektronische Systeme

2. ETI - Prüfstände

Bremsmotor (links) und Prüfling (rechts)

Prüffelder für Elektromotoren am Campus Ost

Umrichter mit vier Drehstrombrücken und DSP-System

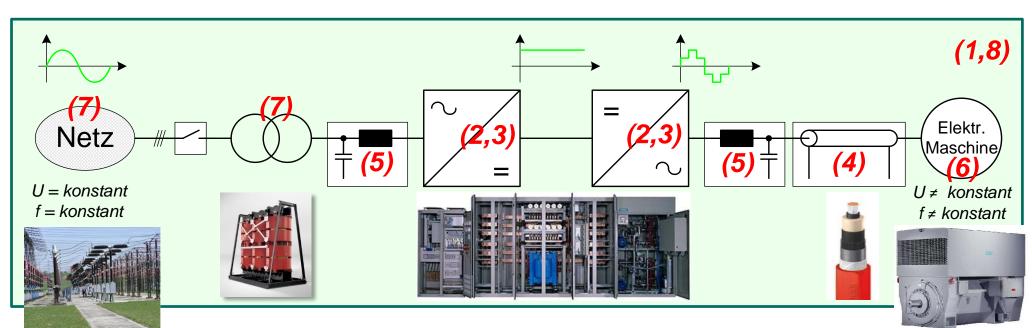
3. Vorlesungsinhalte

Kapitel 0: Einleitung

Kapitel 1: Systemübersicht

Kapitel 2: Stromrichterauslegung

Kapitel 3: Halbleiterauslegung


Kapitel 4: Kabel

Kapitel 5: Filter

Kapitel 6: Wechselwirkung Umrichter/Maschine

Kapitel 7: Netz

Kapitel 8: Systembetrachtungen

3. Zeitplan

	KW	Datum	Inhalt
PLS1	KW42	17.10.2017	Einleitung
PLS2	KW43	24.10.2017	Systemübersicht
	KW44	31.10.2017	Keine Vorlesung - Feiertag
PLS3	KW45	07.11.2017	Systemübersicht
PLS4	KW46	14.11.2017	Stromrichterauslegung
PLS5	KW47	21.11.2017	Stromrichterauslegung
PLS6	KW48	28.11.2017	Stromrichterauslegung
PLS7	KW49	05.12.2017	Halbleiterauslegung
PLS8	KW50	12.12.2017	Systembetrachtungen
PLS9	KW51	19.12.2017	Kabel, Filter
	KW52	26.12.2017	Keine Vorlesung - Weihnachtspause
	KW1	02.01.2018	Keine Vorlesung - Weihnachtspause
PLS10+11	KW50	09.01.2018	Doppel-Veranstaltung (Dozent: Hr. Tischmacher, Siemens AG): Wechselwirkung Umrichter/Maschine
PLS12	KW3	16.01.2018	Netzanwendungen
PLS13	KW4	23.01.2018	Netzverhalten, Netzanwendungen
PLS14	KW5	30.01.2018	Systembetrachtungen, Fragestunde
	KW6	06.02.2018	Keine Vorlesung

4. Literaturempfehlungen

- D. Schröder: Leistungselektronische Schaltungen: Funktion, Auslegung und Anwendung (Springer-Lehrbuch), Verlag: Springer; Auflage: 3. Aufl. 2012. überarb. und erw. (28. Oktober 2012)
- Ned Mohan, Tore M. Undeland, William P. Robbins: Power Electronics: Converters, Applications and Design, (Englisch) Gebundene Ausgabe, Verlag: John Wiley & Sons; Auflage: 3. Auflage (8. November 2002)
- Bin Wu: High-Power Converters and AC Drives (Englisch) Gebundene Ausgabe, Verlag: John Wiley & Sons; Auflage: 1. Auflage (31. März 2006)
- N. G. Hingorani, L. Gyugyi: Understand Facts Concepts and Technology of Flexible AC Transmission Systems (Englisch) Gebundene Ausgabe, Verlag: John Wiley & Sons Inc.

...

23

Vorlesung: Aufbau- und Verbindungstechnik für leistungselektronische Systeme

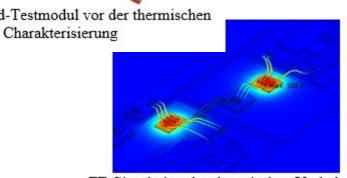
Die Funktionalität leistungselektronischer Systeme wird in erheblichem Maße durch das Design und die Aufbau- und Verbindungstechnik der Module bestimmt.

Die Vorlesung "Aufbau- und Verbindungstechnik für leistungselektronische Systeme" befasst sich unter anderem mit:

- Herstellungsprozessen und Materialien zur Fertigung leistungselektronischer Systeme
- der Qualität und Lebensdauer von leistungselektronischen Modulen
- Testmethoden zur Qualifikation der Systeme und
- Methoden zur thermomechanischen und elektrodynamischen FE-Simulation von Leistungsmodulen

Dozent: Dr.-Ing. Thomas Blank (IPE)

Ort: LTI-Hörsaal 30.34


Zeit: Mittwochs, 08.00 – 09:30 Uhr

Typ: Vorlesung / 2+0 SWS / 3 ECTS

Beginn: 18.10.2017

Prüfung: mündlich

FE-Simulation des thermischen Verhaltens mit COMSOL

25

